Buscar

miércoles, 16 de marzo de 2011

Consideraciones de comodidad

Además de la seguridad hay que considerar los aspectos fisioló- gicos de comodidad del usuario.
El casco debe ser lo más ligero posible y, en cualquier caso, no pesar más de 400 gramos. El arnés debe ser flexible y permeable a los líquidos y no irritar ni lesionar al usuario; por ello, los de material tejido son preferibles a los de polietileno. La badana de cuero, completa o media, es necesaria para absorber el sudor y reducir la irritación de la piel; por motivos higiénicos, debe susti- tuirse varias veces a lo largo de la vida del casco. Para mejorar la comodidad térmica, el armazón debe ser de color claro y tener orificios de ventilación con una superficie comprendida entre 150 y 450 mm2. Es imprescindible ajustar bien el casco al usuario para garantizar la estabilidad y evitar que se deslice y limite el campo de visión. La forma de casco más común dentro de las diversas comercializadas es la de “gorra”, con visera y reborde alrededor. En canteras y obras de demolición protege mejor un casco de este tipo pero con un reborde más ancho, en forma de “sombrero”. Cuando se trabaja a cierta altura es preferible utilizar cascos sin visera ni reborde, con forma de “casquete” ya que estos elementos podrían entrar en contacto con las vigas o pilares entre los que deben moverse a veces los trabajadores, con el consiguiente riesgo de pérdida del equilibrio.

martes, 15 de marzo de 2011

Consideraciones particulares

Los cascos fabricados con aleaciones ligeras o provistos de un reborde lateral no deben utilizarse en lugares de trabajo expuestos al peligro de salpicaduras de metal fundido. En estas circunstancias se recomiendan los de poliéster con fibra de vidrio, tejidos fenólicos, policarbonato con fibra de vidrio o policarbonato.
Cuando hay peligro de contacto con conductores eléctricos desnudos, deben utilizarse exclusivamente cascos de materiales termoplásticos. Deben carecer de orificios de ventilación y los remaches y otras posibles piezas metálicas no deben asomar por el exterior del armazón.
Los cascos destinados a personas que trabajan en lugares altos, en particular los montadores de estructuras metálicas, deben estar provistos de barboquejo con una cinta de aproximadamente 20 mm de anchura y capaz de sujetar el casco con firmeza en cualquier situación.
Los cascos construidos en su mayor parte de polietileno no son recomendables para trabajar a temperaturas elevadas. En estos casos son más adecuados los de policarbonato, policarbonato con fibra de vidrio, tejido fenólico o poliéster con fibra de vidrio. El arnés debe ser de un material tejido. Si no hay peligro de contacto con conductores desnudos, el armazón puede llevar orificios de ventilación.
En situaciones en las que haya peligro de aplastamiento hay que usar cascos de poliéster o policarbonato reforzados con fibra de vidrio y provistos de un reborde de al menos 15 mm de anchura.

lunes, 14 de marzo de 2011

Consideraciones generales

Es aconsejable que se utilicen cascos que cumplan las recomen- daciones de la norma ISO 3873 (o equivalente). La norma europea EN 397-1993 se utiliza como referencia para la certificación de cascos en aplicación de la Directiva 89/686/CEE. El equipo sujeto a esta certificación (casi todo el material de protec- ción personal) se somete obligatoriamente a la certificación por un tercero antes de comercializarlo en Europa. En cualquier caso, los cascos deben cumplir los siguientes requisitos:
1. Un buen casco de seguridad para uso general debe tener un armazón exterior fuerte, resistente a la deformación y la perforación (si es de plástico, ha de tener al menos 2 mm de grosor); un arnés sujeto de manera que deje una separación de 40 a 50 mm entre su parte superior y el armazón; y una banda de cabeza ajustable sujeta al revestimiento interior que garantice una adaptación firme y estable (véase la Figura 31.8).
2. La mejor protección frente a la perforación la proporcionan los cascos de materiales termoplásticos (policarbonatos, ABS, polietileno y policarbonato con fibra de vidrio) provistos de un buen arnés. Los cascos de aleaciones metálicas ligeras no resisten bien la perforación por objetos agudos o de bordes afilados.
3. No deben utilizarse cascos con salientes interiores, ya que pueden provocar lesiones graves en caso de golpe lateral. Deben estar provistos de un relleno protector lateral que no sea inflamable ni se funda por el calor. Para este fin sirve un acolchado de espuma rígida y resistente a la llama de 10 a
15 mm de espesor y al menos 4 cm de anchura.
4. Los cascos fabricados con polietileno, polipropileno o ABS tienden a perder la resistencia mecánica por efecto del calor, el frío y la exposición al sol fuerte o a fuentes intensas de radiación ultravioleta (UV). Si este tipo de cascos se utilizan con regularidad al aire libre o cerca de fuentes de UV, como las estaciones de soldadura, deben sustituirse al menos una vez cada tres años. En estas condiciones conviene utilizar cascos de policarbonato, poliéster o policarbonato con fibra de vidrio, ya que resisten mejor el paso del tiempo. En todo caso, el casco debe desecharse si se decolora, se agrieta, desprende fibras o cruje al combarlo.
5. También debe desecharse el casco si ha sufrido un golpe fuerte, aunque no presente signos visibles de haber sufrido daños.

domingo, 13 de marzo de 2011

Elección de un casco de seguridad

Todavía no se ha inventado el casco ideal que proporcione protección y comodidad perfectas en todas las situaciones. De hecho, protección y comodidad son exigencias frecuentemente contradictorias. En lo que se refiere a la protección, hay que elegir el casco considerando los peligros frente a los que se busca protección y las condiciones de uso, prestando especial atención a las características de los productos de seguridad disponibles.

sábado, 12 de marzo de 2011

Pruebas de rendimiento

La norma internacional ISO 3873-1977 se publicó en 1977 como resultado del trabajo del Subcomité dedicado al estudio de “cascos industriales de seguridad”. Esta norma, aprobada prácticamente por todos los Estados miembros de la ISO, describe las características esenciales que debe cumplir un casco de seguridad
y los métodos de prueba relacionadas con éstas. Las pruebas pueden dividirse en dos grupos (véase la Tabla 31.7):
1. Pruebas obligatorias: se aplican a todos los tipos de cascos, sea cual sea el uso al que estén destinadas: capacidad de absor- ción de golpes, resistencia a la perforación y resistencia a la llama.
2. Pruebas opcionales: se aplican a cascos de seguridad diseñados para grupos de usuarios especiales: resistencia dieléctrica, resistencia a la deformación lateral y resistencia a bajas temperaturas.
La resistencia al envejecimiento de los materiales plásticos utilizados en la fabricación de cascos no está especificada en la norma ISO 3873-1977, pero esta especificación debería exigirse en cascos de plástico. Una prueba sencilla consiste en exponer el casco a una lámpara de xenón de alta presión de 450 watios con ampolla de cuarzo durante 400 horas a una distancia de 15 cm y comprobar a continuación si todavía resiste la prueba de perforación apropiada.
Se recomienda someter los cascos utilizados en la industria del hierro y del acero a una prueba de resistencia a las salpicaduras de metal fundido. Una forma rápida de comprobar el comporta- miento en estas circunstancias consiste en verter 300 gramos de metal fundido a 1.300C sobre la parte superior del casco y comprobar que no ha pasado nada al interior.
La norma europea EN 397 adoptada en 1995 especifica requisitos y métodos de ensayo para estas dos importantes características.

viernes, 11 de marzo de 2011

Cascos de seguridad

El principal objetivo del casco de seguridad es proteger la cabeza de quien lo usa de peligros y golpes mecánicos. También puede proteger frente a otros riesgos de naturaleza mecánica, térmica o eléctrica.
Para reducir las consecuencias destructivas de los golpes en la cabeza, el casco debe cumplir las siguientes condiciones:
1. Limitar la presión aplicada al cráneo distribuyendo la carga sobre la mayor superficie posible. Esto se logra dotándolos de un arnés lo suficientemente grande para que pueda adaptarse bien a las distintas formas del cráneo, combinado con un armazón duro de resistencia suficiente para evitar que la cabeza entre en contacto directo con objetos que caigan accidentalmente o contra los que golpee el usuario (Figura 31.8). Por tanto, el armazón debe resistir la deformación y la perforación.

2. Desviar los objetos que caigan por medio de una forma adecuadamente lisa y redondeada. Los cascos con rebordes salientes tienden a parar los objetos que caen en lugar de a desviarlos y, por tanto, absorben algo más de energía cinética que los totalmente lisos.
3. Disipar y dispersar la posible energía que se les transmita de modo que no pase en su totalidad a la cabeza y el cuello. Esto se logra por medio revestimiento del arnés, que debe estar bien sujeto al armazón duro y absorber los golpes sin desprenderse de él. También debe ser suficientemente flexible para deformarse por efecto del impacto sin tocar la superficie interior del armazón. Esta deformación, que absorbe casi toda la energía del choque, está limitada por la cantidad de espacio libre entre el armazón duro y el cráneo, y por la elongación máxima que tolera el arnés antes de romperse. Por tanto, la rigidez o dureza del arnés debe atender tanto a la cantidad máxima de energía que puede absorber como a la tasa progresiva a la que el golpe puede transmitirse a la cabeza.
Los cascos utilizados para trabajos especiales deben cumplir otros requisitos, como la protección frente a salpicaduras de metal fundido, en la industria del hierro y del acero, o frente a descargas eléctricas por contacto directo en trabajos de electricidad.
Los materiales empleados en la fabricación de cascos y arneses deben conservar sus propiedades protectoras durante mucho tiempo y en todas las condiciones climatológicas previsi- bles, como sol, lluvia, calor, heladas, etc. También deben ofrecer buena resistencia a la llama y resistir sin romperse caídas de algunos metros contra superficies duras.

jueves, 10 de marzo de 2011

Lesiones en la cabeza (II)

Aunque esencial, es difícil determinar los parámetros físicos responsables de estos distintos tipos de lesión; la abundante documentación dedicada a este asunto revela un desacuerdo considerable. Algunos especialistas consideran que la fuerza es el principal factor, mientras que otros sostienen que la clave está en la energía o la cantidad de movimiento; otras opiniones vinculan la lesión cerebral con la aceleración, la tasa de aceleración o un índice de choque específico, como HIC, GSI o WSTC. En la mayor parte de los casos intervienen en mayor o menor grado todos estos factores. Se puede afirmar que nuestro conocimiento de los mecanismos del choque de la cabeza es por el momento sólo parcial o contradictorio. La tolerancia de la cabeza al choque se determina experimentalmente en cadáveres o animales, y no es fácil extrapolar los valores así obtenidos a personas vivas.
Según los resultados del análisis de accidentes sufridos por trabajadores de la construcción protegidos con casco, parece que se producen lesiones de cabeza a consecuencia de choques cuando la cantidad de energía es superior a unos 100 J.
Hay otros tipos de lesiones menos frecuentes pero que no deben infravalorarse: quemaduras por salpicadura de líquidos calientes o corrosivos o materiales fundidos, o descargas eléctricas debidas al contacto accidental de la cabeza con conduc- tores que están al descubierto.

miércoles, 9 de marzo de 2011

Lesiones en la cabeza

Las lesiones en la cabeza son bastante comunes en la industria y suponen entre el 3 % y el 6 % de todas las lesiones laborales en los países industrializados. Suelen ser graves y causan por término medio la pérdida de unas tres semanas de trabajo. Estas lesiones son casi siempre consecuencia de golpes provocados por el impacto de objetos contundentes, como herramientas o tornillos que caen desde varios metros de altura; en otros casos es el trabajador el que se golpea al caer al suelo o chocar contra algún objeto fijo.
Se han registrado distintos tipos de lesiones:

• perforación del cráneo por aplicación de una fuerza excesiva sobre una zona muy localizada, como ocurre cuando se entra en contacto directo con un objeto punzante o afilado;
• fractura del cráneo o de las vértebras cervicales cuando se aplica una fuerza excesiva sobre una superficie mayor, que somete al cráneo a una tensión superior a su elasticidad o a la resistencia a la compresión de la región cervical de la columna;
• lesión cerebral sin fractura del cráneo como consecuencia del desplazamiento súbito del cerebro dentro de la cabeza, con el resultado de contusión, conmoción cerebral, hemorragia cerebral o trastornos circulatorios.

martes, 8 de marzo de 2011

Uso y mantenimiento

Todo calzado protector debe mantenerse limpio y seco cuando no se usa y debe sustituirse tan pronto como sea necesario. Cuando varias personas comparten las mismas botas de caucho hay que organizar la desinfección sistemática entre usos para evitar la transmisión de infecciones de los pies. El uso de botas o zapatos excesivamente apretados y pesados favorece la aparición de micosis en los pies.
El éxito de cualquier calzado protector depende de su acepta- bilidad, un hecho que ahora se refleja de forma generalizada en la muy superior atención que se presta al diseño. La comodidad es una cualidad irrenunciable, y el calzado debe ser todo lo ligero que permita su utilidad. Deben evitarse los zapatos que pesen más de dos kilogramos el par.
A veces la legislación obliga a la empresa a proporcionar protección de seguridad para pies y piernas. Muchas firmas interesadas en aplicar programas avanzados y no sólo en cumplir las obligaciones legales han observado que resulta muy eficaz organizar la venta a precios ventajosos en el lugar de trabajo. Cuando el material de seguridad se ofrece a precio de mayorista o a plazos cómodos de pagar, los trabajadores suelen estar más dispuestos a adquirir y utilizar equipos mejores. Este método permite controlar mejor el tipo de protección que se obtiene y utiliza. No obstante, muchos convenios y reglamentos consideran obligación de la empresa proporcionar a los trabajadores ropa de faena y equipo protector.

lunes, 7 de marzo de 2011

Tipos de protección. (III)

Ahora es de uso común el calzado de doble propósito con propiedades antielectrostáticas y capaz de proteger frente a descargas eléctricas generadas por fuentes de baja tensión. En este último caso hay que regular la resistencia eléctrica entre la plantilla interna y la suela externa con el fin de que el calzado proteja dentro de un intervalo de tensiones determinado.
Antes las únicas consideraciones eran la seguridad y la durabilidad, pero ahora también se tiene en cuenta la comodidad del trabajador y se buscan cualidades como ligereza, comodidad, e incluso diseño atractivo. Las zapatillas deportivas de seguridad son un ejemplo de este tipo de calzado. El diseño y el color pueden utilizarse como símbolo de identidad corporativa, un asunto que en algunos países, como Japón, suscita un interés especial.
Las botas de caucho sintético protegen bien frente a las lesiones de origen químico. El material no debe sufrir una reduc- ción superior al 10 % en la resistencia a la tensión o el alarga- miento después de estar sumergido durante 48 horas a temperatura ambiente en una solución de ácido clorhídrico al 20 %.
En medios donde las quemaduras causadas por metales fundidos o productos químicos constituyan un peligro destacado, es importante que los zapatos o botas no tengan lengüeta y que los cordones salgan por la parte superior y no se enganchen por dentro.
Las polainas y espinilleras de caucho o metálicas sirven para proteger la pierna por encima de la línea del calzado, en especial frente al riesgo de quemaduras. A veces hay que utilizar rodi- lleras, sobre todo cuando el trabajo obliga a arrodillarse, como ocurre en algunos talleres de fundición y moldeo. Cerca de fuentes de calor intenso hay que usar zapatos, botas o polainas protectoras aluminizadas.

domingo, 6 de marzo de 2011

Tipos de protección. (II)

caucho o sintéticas en diversos dibujos; esta medida es particularmente importante cuando se trabaja en pisos que pueden mojarse o volverse resbaladizos. El material de la suela es mucho más importante que el dibujo, y debe presentar un coeficiente de fricción elevado. En obras de construcción es necesario utilizar suelas reforzadas a prueba de perforación; hay también plantillas internas metálicas para añadir al calzado que carece de esta clase de protección.

Cuando hay peligro de descargas eléctricas, el calzado debe estar íntegramente cosido o pegado o bien vulcanizado directamente y sin ninguna clase de clavos ni elementos de unión conductores de la electricidad. En ambientes con electricidad estática, el calzado protector debe estar provisto de una suela externa de caucho conductor que permita la salida de las cargas eléctricas.

sábado, 5 de marzo de 2011

Tipos de protección.

El tipo de protección del pie y la pierna debe elegirse en función del peligro. En ciertas industrias ligeras pueden ser suficientes los zapatos normales. Muchas mujeres, por ejemplo, usan calzado que les resulta cómodo, como sandalias o zapatillas viejas o zapatos con tacones muy altos o desgastados. Esta práctica debe desaconsejarse, porque este tipo de calzado puede provocar accidentes.
En ocasiones bastan unos zapatos protectores o unos zuecos y en otros casos hay que usar botas o polainas (véanse las Figuras 31.5, 31.6 y 31.7). La altura del calzado —hasta el tobillo, la rodilla o el muslo— depende del peligro, pero también deben tenerse en cuenta la comodidad y la movilidad. Así, en algunos casos es mejor usar zapatos con polainas que botas altas. Los zapatos y botas de protección pueden ser de cuero, caucho, caucho sintético o plástico y pueden estar cosidos, vulcanizados o moldeados. Como los dedos de los pies son las partes más expuestas a las lesiones por impacto, una puntera metálica es un elemento esencial en todo calzado de seguridad cuando haya tal peligro. Para mejorar la comodidad, la puntera puede ser razonablemente delgada y ligera, y por ello suele fabricarse en acero rápido al carbono. Esta puntera de seguridad puede añadirse a muchos tipos de botas y zapatos. En algunos trabajos en los que la caída de objetos supone un peligro especial, los zapatos de seguridad pueden cubrirse con unas defensas metálicas externas.




viernes, 4 de marzo de 2011

PROTECCION DE PIES Y PIERNAS

Las lesiones de pies y piernas son comunes en muchos sectores industriales. La caída de un objeto pesado puede lesionar el pie, en particular los dedos, en cualquier lugar de trabajo, pero sobre todo en industrias pesadas, como la minería, la fabricación de productos metálicos, la ingeniería, la construcción y el montaje. Las quemaduras de las extremidades inferiores por metal fundido, chispas o compuestos químicos corrosivos son frecuentes en talleres de fundición, siderurgia del hierro y el acero, fabrica- ción de productos químicos, etc. Los compuestos ácidos y alcalinos y muchos otros agentes pueden causar dermatitis o eccema. Además, los pies pueden lesionarse al golpear contra algún objeto o al pisar en salientes afilados, como ocurre en el sector de la construcción.
Las mejoras en el medio ambiente de trabajo han hecho de las perforaciones y laceraciones causadas por pisar inadvertidamente clavos salientes y otros objetos agudos un accidente menos común, pero continúan produciéndose lesiones por trabajar en suelos húmedos o inundados, sobre todo si se usa calzado inadecuado.

jueves, 3 de marzo de 2011

Protección frente a peligros concretos: Rayos de láser.

No hay ningún filtro que proteja frente a todas las longitudes de onda del láser. Los distintos tipos de láser varían en longitud de onda; hay tipos que emiten haces de distintas longitudes y otros en los que este valor se modifica con ayuda de sistemas ópticos. Por tanto, las empresas en las que se trabaja con láser no pueden limitarse al uso de protectores de láser genéricos para evitar las quemaduras oculares de sus trabajadores. No obstante, los operarios de láser necesitan con frecuencia protección ocular. Se comercializan gafas y gafas de montura integral de formas simi- lares a las ilustradas en las Figuras 31.1 y 31.2. Cada tipo de protector presenta una atenuación máxima a una longitud de onda de láser determinada y la protección disminuye rápidamente a otras longitudes. Es esencial elegir el protector ocular adecuado para el tipo de láser, la longitud de onda y la densidad óptica. El dispositivo empleado debe proteger frente a reflejos y luces dispersas y hay que adoptar las máximas precauciones para prever
y evitar la exposición a radiaciones nocivas.
Cuando se trabaja con protectores oculares y faciales hay que prestar la atención debida a la comodidad y la eficacia. Es importante encomendar el ajuste y la adaptación de estos dispositivos a una persona que haya recibido alguna formación en este terreno. Cada trabajador debe disponer de un protector de uso personal, aunque en talleres grandes pueden suministrarse en común con operaciones de limpieza y tratamiento antivaho. La comodidad es particularmente importante cuando se trabaja con protectores de capucha y casco, pues el calor que producen llega a ser casi insoportable (este efecto puede evitarse con tubos de ventilación). Siempre que los riesgos del proceso de trabajo lo permitan, conviene aprovechar la ventaja psicológica de ofrecer al trabajador la posibilidad de elegir entre distintos tipos de protección.
Los protectores deben examinarse con regularidad para comprobar que se encuentran en orden de servicio. Hay que cerciorarse de que proporcionan protección adecuada en todo momento, incluso cuando se usan instrumentos de corrección de la vista.

miércoles, 2 de marzo de 2011

Protección frente a peligros concretos: Bandas de espectro amplio.

Durante las operaciones de soldadura y corte y en los hornos se emiten radiaciones en las bandas ultravioleta, visible e infrarroja del espectro, todas ellas potencialmente nocivas para los ojos. Pueden usarse protectores tipo gafas o gafas de montura integral, como los ilustrados en las Figuras 31.1 y 31.2 y protectores de soldadura, como los que se muestran en la Figura 31.4. En trabajos de soldadura suelen emplearse protectores de casco y de sujeción manual, a veces combinados con gafas o gafas de montura integral. Hay que señalar que también debe usar protección el ayudante del soldador.
Los valores y tolerancias de transmitancia de distintos tipos de filtros y placas filtrantes de protección ocular frente a luz de intensidad elevada se recogen en la Tabla 31.1. Las Tablas 31.2 a 31.6 ofrecen una guía para elegir el filtro adecuado en función del grado de protección.
Constituye una novedad el uso de placas filtrantes fabricadas con superficies de cristal soldadas que se oscurecen y aumentan la capacidad de protección en cuanto se enciende el arco de soldadura. Este oscurecimiento es casi instantáneo, y en algunos tipos se produce en tan sólo 0,1 ms. La buena visibilidad que propor- cionan las placas cuando no se está soldando puede favorecer su uso.

martes, 1 de marzo de 2011

Protección frente a peligros concretos: Soldadura

Operarios, soldadores y ayudantes deben llevar gafas de montura integral, cascos o pantallas que proporcionen la máxima protección ocular en cada tipo de trabajo de soldadura y corte. No sólo es necesario protegerse eficazmente frente a la luz y la radiación intensas, sino también frente a los impactos en el rostro, la cabeza y el cuello. Los protectores de plástico o nylon reforzados con fibra de vidrio son eficaces, pero bastante caros. Como material protector se emplean mucho las fibras vulcanizadas. Como se ilustra en la Figura 31.4, para proteger los ojos y la cara al mismo tiempo se usan protectores.